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Abstract. The stability of oscillatory flows over compliant surfaces is studied analytically and numerically.
The types of compliant surfaces studied are the spring backed wall model, which permits tangential motion
of the surface, and the incompressible viscoelastic gel model. The stability is determined using the Floquet
analysis, where amplitude of perturbations at time intervals separated by one time period is examined to
determine whether perturbations grow or decay. The oscillatory flows past both the spring backed wall
model and the viscoelastic gel model exhibit an instability in the limit of zero Reynolds number, and the
transition amplitude of the oscillatory velocity increases with the frequency of oscillations. The transition
amplitude has a minimum at zero wave number for the spring backed plate model, whereas the minimum
occurs at finite wavenumber for the viscoelastic gel model. For the spring backed plate model, it is shown
that the instability due to steady mean flow and the purely oscillatory instability reinforce each other, and
the regions of instability are mapped in the (Λ − A) plane, where Λ is the steady strain rate and A is the
oscillatory strain rate. For the viscoelastic gel model, the instability is found to depend strongly on the gel
viscosity ηg , and the effect of oscillations on the continuation of viscous modes at intermediate Reynolds
number shows a complicated dependence on the oscillation frequency.

PACS. 47.20.Ft Instability of shear flows – 83.50.-v Deformation and flow – 87.19.Tt Rheology of body
fluids

1 Introduction

Fluid flow over soft materials is ubiquitous in biological as
well as in technological applications. These soft materials
could be infinitesimally thin viscoelastic membranes, like
those occurring in red blood cells, or flexible walls of finite
thickness, like the walls of blood vessels. The dynamics of
fluid flow past flexible surfaces is qualitatively different
from the flow over rigid surfaces, because of the coupling
between the fluid and the wall dynamics, and the wall
properties can influence the stability characteristics in a
non-trivial manner. Oscillatory flow over soft materials are
encountered in the flow of cardiovascular fluids through
flexible blood vessels which are driven by the pumping of
the heart. The Reynolds numbers for these flows varies
over a wide range between Re < 1 and Re = 4000 [1]. The
oscillatory nature of the blood flow in the vascular system
is characterized by a number often called the Womersley
or Witzig number α = R

√
(ω/ν), where R is the artery

diameter, ω is the oscillatory frequency and ν is the kine-
matic viscosity of the cardiovascular fluid, and these ar-
terial flows can be affected by the wall elasticity and con-
ditions like stenosis, when the arteries get narrowed and
obstructed. There has been great deal of experimental and
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computational fluid dynamics studies to calculate the os-
cillatory and peristaltic fluid flow through elastic tubes.
The elasticity of the wall is carefully accounted for in the
analysis, and is found to affect the flow in a significant
manner. However, all these studies are carried out for fluid
flow through tubes or surfaces which, although flexible, are
of fixed geometries. Not much work has been done on the
moving boundary elastic solid-fluid interaction problems,
and so the problem of onset of instability and full numer-
ical evolution of perturbations has not been addressed till
date.

The objective of the study of the stability of steady
flows is to determine whether the growth rate of pertur-
bations in time is positive or negative. It is difficult to use
a similar procedure for oscillatory flows, since the mean
velocity is a periodic function of time. If the growth rate is
large compared to the frequency of oscillations, it is pos-
sible to approximate the flow at any instant of time as
a steady flow with the instantaneous mean velocity, and
examine the growth of perturbations for this flow. In this
case, it is expected that if the velocity at any point in
the oscillatory cycle is greater than the critical velocity
for the steady flow, perturbations will grow rapidly in a
time scale short compared to the period of oscillation and
take the system into the non-linear regime. However, if
the growth rate is not large compared to the frequency of
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oscillations, the growth of perturbations during the part
of the cycle when the velocity is greater than the critical
velocity for a steady flow could be compensated by the
decay of perturbations during the part of the cycle when
the velocity is lower than that for a steady flow. In this
case, it is necessary to examine the relative amplitude of
perturbations at equal phase angles in successive cycles,
in order to determine whether there is growth or decay of
perturbations as the cycles progress. This is carried out in
the present study using the Floquet analysis.

The stability of a horizontal liquid layer on an oscil-
lating plate was studied by Yih [2] using low wavenumber
asymptotic analysis. The oscillatory flow was shown to
be unstable, although the non-oscillatory flow is stable.
Von Kerckzek and Davis [3] studied the flow of a layer
of fluid down an inclined oscillating plane. This system is
known to be unstable in the absence of oscillation, and
Von Kerckzek and Davis [3] calculated the stability win-
dows for this flow in the presence of oscillations. This anal-
ysis indicates that although the Stokes layer has velocity
profiles with inflection points, those are unstable only at
low frequencies. At sufficiently high frequencies, the inflec-
tional unstable modes may not have enough time to grow,
and can be eventually stabilized by the rapidly oscillating
flow. Coward and Papageorgiou [4] studied the stability
of two-phase Couette flow bounded between plane paral-
lel plates using the long wave analysis of Yih [2], where one
of the bounded plates had a time dependent velocity in its
plane. The time dependent velocity had a constant and an
oscillatory time periodic part. The flow is unstable in the
nonoscillatory regime due to an interfacial instability if the
viscosities are different. Using Floquet theory, the authors
showed that in the long wave limit, the time modulations
can have significant influence on flow stability. Their anal-
ysis showed that flows which are otherwise unstable can
be stabilized by oscillations. King et al. [5] studied the
problem of oscillatory two-phase Couette flow experimen-
tally as well as numerically. Since the Floquet theory gives
only time averaged growth rates, they calculated the tran-
sient instability numerically and showed that the interfa-
cial wave amplification actually originates with an internal
disturbance, and is not directly caused by interfacial shear.
Coward and Renardy [6] studied the effect of oscillatory
forcing as a dynamic stabilisation mechanism for two-layer
plane Couette-Poiseuille flow at low Reynolds numbers us-
ing numerical and asymptotic methods. They found that
the oscillations can have stabilising or destabilizing effect
depending upon the conditions of the flow. Complete sta-
bilisation is possible for certain flows which are otherwise
unstable owing to the viscosity stratification across the in-
terface. The combined pressure and velocity fluctuations
can have an effect on the flow stability opposite to that
induced by the time-periodic forcing mechanisms. There
has been very little work on the stability of viscoelastic
oscillatory flows. Ramaan et al. [7] studied the stability of
viscoelastic shear flows subjected to steady and oscillatory
transverse flows. Their study showed that superposition of
axial periodic motion on circular Couette and Dean flows
can delay the onset of the viscoelastic instability. However,

there does not seem to have been much work done on the
stability of oscillatory fluid flows over compliant surfaces,
which forms the basis of the present work.

There have been a large number of studies, moti-
vated by drag reduction in marine and aerospace applica-
tions [8–12], of the steady flow of a Newtonian fluid past a
flexible surface. These have modeled the flexible wall to be
a thin spring-backed plate membrane. The high Reynolds
number Tollmien – Schlichting instability (TSI) is mod-
ified owing to the flexibility of the wall. Benjamin [13]
extended the classical stability theory of Tollmien and
Schlichting (see, for example, Drazin and Reid [14]) and
showed that a flexible non-dissipative wall tends to sta-
bilise the TSI, which is the destabilising mechanism in
flow past rigid surfaces. In addition, Benjamin [15] and
Landahl [16] pointed out that there is an additional mode
of instability that could exist in an inviscid flow, which was
termed the ‘flow-induced surface instability’ (FISI). Car-
penter and Garrad [11,12] analysed the stability of Blasius
flow over a compliant plate, in which they considered both
TSI and FISI. The TSI was analysed numerically, while
FISI was analysed using both analytical and numerical
methods. These studies concluded that the wall flexibility
usually stabilises the flow in the boundary layer and in-
creases the Reynolds number at which transition to turbu-
lence occurs. Carpenter and Morris [10] analysed the effect
of anisotropic wall compliance on the stability of Blasius
boundary layer flow past flexible surface modelled as a
spring-backed wall. Unlike the earlier studies of Carpen-
ter and co-workers, this study included both normal and
tangential motion in the plate-membrane wall. Davies and
Carpenter [8] studied the stability of the plane-Poiseuille
flow in a compliant channel. This study modelled the com-
pliant walls as spring-backed plates with only normal wall
motion. This study analysed the interconnected behaviour
of FISI and TSI using both asymptotic and numerical
methods, and found that if the compliant wall properties
are selected to give a significant stabilising effect on TSI,
the onset of FISI could be severely affected.

Another model that has been used for the flexible wall
is the continuum visco-elastic wall model [17–22]. In this
case, the wall material is modeled as a visco-elastic contin-
uum, and the dynamical description is based on the dis-
placement field, which provides the displacement of mate-
rial points from their equilibrium positions due to stresses
exerted on the wall. There is an elastic stress due to the
strain in the material, and a viscous stress due to the strain
rate. The theoretical results [17] for the viscous instabil-
ity were found to be in agreement with the experimental
results [21] with no adjustable parameters. In the present
analysis, we consider the stability of oscillatory flows past
compliant walls of the spring-backed membrane type and
the continuum visco-elastic type.

Oscillatory flows are unsteady, and it is important to
precisely define the stability of an unsteady flow. Pre-
sented below is the description of stability in unsteady
flows as discussed in Davis [23]. In oscillatory flows, since
the basic state itself is unsteady, a natural measure of
the system stability would be the comparison between
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the growth rate of the system and the rate of change of
the base state. However difficulties arise in interpretation,
since the time periodic base state accelerates in the first
cycle and decelerates in the second half. A system would
be called monotonically stable if the disturbances decay at
every point in time. However there can be cases in which
the disturbances grow in the first half of the cycle and
then decay, so that there is a net decay of the pertur-
bation over the cycle. These are called transiently stable
systems. However, the perturbation can attain sufficient
amplitude during the growth cycle, so that the perturba-
tion amplitude is no longer small compared to the mean
flow velocity. In this case, nonlinear interactions can then
lead to secondary flows. This is a more difficult mathe-
matical problem, and in the present analysis, we assume
that the amplitude of the disturbances remain small at all
times over the cycle, so that the non-linear terms can be
neglected.

Oscillatory systems are characterised by an additional
time scale in the system, the oscillation frequency, which
also gives an additional length scale, called the Stokes
length (ν/ω)1/2. The perturbations due to plate oscil-
lations result in velocity disturbances over length scales
comparable to the Stokes length. When the Stokes length
is small compared to the width of the channel, the flow
resembles a boundary layer flow where disturbances are
localized near the oscillating plate, and it is expected that
interfacial instabilities will not be affected by this type of
forcing. The most interesting regime is when the Stokes
length is comparable to the width of the channel, when
there is a coupling between the motion of the top plate
and the interfacial motion. This regime is examined in
the present analysis.

The article is organised as follow. The Floquet theory
of dynamical equations is discussed in Section 2. The in-
stability in oscillatory flow over spring backed plates in
discussed in Section 3, and the oscillatory flow instability
over viscoelastic gels is analysed in Section 4. The experi-
mental results for the low Reynolds number instability in
flow over viscoelastic gels is presented in Section 5.

2 Floquet theory for the dynamical equations

The Floquet analysis is used to determine the stability
of time periodic base states or limit cycles. A Floquet
exponent larger than one implies that the limit cycle is
unstable to small perturbations. The relation between the
Floquet exponents and the characteristic root, which is
the growth rate in the linear analysis for a non-oscillatory
flow, is as follows. Consider a linear dynamical system
governed by the equation

ẋ = Lx (1)

where x is a column vector, the superscript ˙ represents
the time derivative, and L is a matrix with periodic coef-
ficients which have time period T . If x0(t) is a solution of
equation (1), it is easy to see that if

x0(t + (n + 1)T ) = Ax0(t + nT ) (2)

where n is an integer, then

A = exp

(∫ t+T

t

dt′L(t′)

)

= exp (B) (3)

where B is a square matrix. In addition, it can be eas-
ily inferred that if all eigenvalues of A are discrete and
A is non-singular so that it can be reduced to its Jordan
form, the eigenvectors of B are identical to the eigenvec-
tors of A, and αi, the eigenvalues of A, are related to θi,
the eigenvalues of B, by

αi = exp (θi). (4)

The eigen values of A determine whether the components
of the vector x0 decay or grow as time progresses. If any
eigenvalue of A is greater than 1 (or any eigenvalue of B is
positive), then the projection of x0 in the direction of the
corresponding eigenvector of A increases as the number of
time periods increases, whereas if all eigenvalues A are less
than 1 (or all eigenvalues of B have negative real parts),
then all components of x0 decay in time. For a steady flow
in which L is independent of time, the eigenvalues θi of B
are related to the eigenvalues λi of L (the linear growth
rates) by

θi =
λi

T
. (5)

The stability of an oscillatory flow which satisfies the equa-
tion

ẋ(t) = F (x(t)) (6)

is determined as follows. First, the time periodic solution x̄
which satisfies the equation (6) is identified. The solution
is then perturbed about this state using a perturbation of
the form x = x̄ + x′, and the equation (6) is linearized in
the amplitude of the perturbations x′ to obtain an equa-
tion of the form

ẋ′ = Lx′. (7)

Equation (7) is then reduced to an equation of the form 2,
and the eigenvalues of the matrix A (or equivalently
the Floquet exponents, which are the eigenvalues θi of
the matrix B) are extracted to determine the stability
of the time periodic state. In the present work, we discuss
the stability characteristics in terms of the eigenvalue θi,
the growth rate of the system. The system is stable if the
growth rate θi is negative and unstable if θi is positive.

3 Spring backed plates

The flow of a fluid between a spring backed flexible wall at
z∗ = 0 and a rigid plate at z∗ = H∗ is considered, and the
spring backed wall is at rest in the base state, while the
rigid wall moves with a velocity V ∗ +A∗ cos (Ω∗t∗), where
V ∗ is the steady velocity, Ω∗ is the dimensional frequency
of the top plate, and A∗ is the dimensional amplitude of
the top plate. The superscript ∗ is used to indicate dimen-
sional quantities, while quantities without the superscript
are dimensionless. The fluid is an incompressible Newto-
nian fluid with density ρ∗ and viscosity µ∗, and the wall is
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modeled as a spring backed wall in which the springs are
inclined, so that the wall has both normal and tangential
compliance. No-slip conditions are used for the fluid ve-
locity at both surfaces, while the stress balance condition
at the flexible wall is

n∗.T∗.n∗ =
[
M∗∂∗2

t − T ∗∂∗2
x + B∗∂∗4

x + K∗] u∗
z (8)

t∗.T∗.n∗ =
[
M∗∂∗2

t − E∗∂∗2
x + K∗] u∗

x (9)

where T∗ is the stress tensor in the fluid, n∗ and t∗ are the
unit normal and tangent to the surface, M∗, T ∗, B∗, K∗
and E∗ are the dimensional mass, transverse tension,
bending modulus, spring constant and longitudinal ten-
sion respectively, u∗

z and u∗
x are the normal and tangential

displacements respectively, and x∗ and z∗ are the coor-
dinates tangential and normal to the surface in the base
state.

The spring backed wall model is similar to that used
by Thaokar et al. [24] and Shankar and Kumaran [25],
which is a slight modification of the model used in earlier
studies [8–12]. In these models, the normal force in the
wall is proportional to normal displacement, but there is
no equivalent restoring force in the tangential direction.
In the absence of a tangential restoring force proportional
to tangential displacement, the surface develops a longitu-
dinal tension due to the steady mean flow which increases
in the flow direction. In the present analysis, a tangential
restoring force proportional to the tangential displacement
is included, to balance the mean stress exerted due to the
fluid shear at the surface.

The fluid velocity field is scaled by (H∗2K∗/µ∗), length
is scaled by H∗, time by (µ∗/H∗K∗) and pressure by
(K∗H∗). The scaled top plate mean velocity is then
given by Λ+A cos (Ωt), where the non-dimensional strain
rates are Λ = (V ∗µ∗/H∗2K∗) and A = (A∗µ∗/H∗2K∗).
The non-dimensional membrane parameters are M =
M∗/(ρ∗H∗), E = E∗/(K∗H∗2), T = T ∗/(K∗H∗2) and
B = B∗/(K∗H∗4). The non-dimensional Navier-Stokes
equations are

∇.v = 0 (10)

Σ (∂tv + v.∇v) = −∇P + ∇2v (11)

where v is the fluid velocity field, P is the pressure field,
Σ = Re

Λ = Reo

A , and the two Reynolds numbers Re and
Reo based on the steady mean velocity and the oscilla-
tory mean velocity are Re = ρ∗V ∗H∗

µ∗ and Reo = ρ∗A∗H∗
µ∗

respectively. Note that Σ is a material property which is
independent of velocity, given by Σ = ρ∗H∗3K∗

µ∗2 . The base
state velocity profile is a unidirectional, time periodic flow
in the fluid, and the base state tangential displacement is
time periodic, both of which have frequency Ω. The ve-
locity profile in the base state in the flow direction, v̄x, is
governed by the momentum equation

Σ
∂v̄x

∂t
=

∂2v̄x

∂z2
(12)

and the boundary conditions are

v̄x|z=1 = Λ + A cos (Ωt)

v̄x|z=0 =
dūx

dt
dv̄x

dz
|z=0 =

ReM

Λ

d2ūx

dt2
+ ūx (13)

where ūx is the mean tangential displacement in the wall.
In the normal mode analysis, the perturbation vari-

ables are expressed as f(x, z, t) = f̃(z, t)eikx, where
k is the wave number in the streamwise direction. An
Orr-Sommerfeld type of equation can then be obtained
for the perturbation to the fluid velocity field,

Σ
[

∂

∂t
+ v̄xik

]
(∂2

z − k2)ṽz = (∂2
z − k2)2ṽz +Σ ik(∂2

z v̄x) ṽz .

(14)
The boundary conditions for this equation at the top plate
are ṽz = 0 and ∂z ṽz = 0 (ṽx = 0). The boundary condi-
tions at the spring backed plate membrane are

ṽz = ∂tũz + v̄xikũz, (15)
ṽx + ũz∂z v̄x = ∂tũx + v̄xikũx (16)

∂z ṽx + ikṽz + ∂z(∂z v̄x)ũz =
[
ΣM∂2

t + Ek2 + 1
]
ũx (17)

−p̃ + 2∂z ṽz − (∂z v̄x)ikũz =
[
ΣM∂2

t +Tk2+Bk4+1
]
ũz

(18)

where

p̃ =
i

k
Σ

[(
∂

∂t
+ v̄xik

)
ṽx + (∂z V̄x) ṽz

]
− i

k
(∂2

z − k2)ṽx.

(19)
It should be noted that the results of the linear stabil-

ity analysis for a steady shear flow for the present spring
model equation (9) are qualitatively different from ear-
lier results [24,25] due to the presence of the tangential
restoring force. Whereas the scaled transition velocity Λ
is proportional to k in the low wave number limit in the
earlier studies [24,25], the transition velocity converges to
a finite value in the limit k → 0 in the present case, due
to the tangential restoring force, as shown in Figure 1.

The stability of the oscillatory flow was studied us-
ing asymptotic analysis, as well as numerically using the
Chebushev Tau method [23,27]. The spectral Chebyshev
Tau method is verified with the analytical results at
zero Reynolds number and with the numerical results ob-
tained by the method of Srivatsan and Kumaran [26],
and good agreement was found upto five significant fig-
ures. The spectral code for the oscillatory problem was
also validated by comparing with the zero Reynolds num-
ber asymptotic analysis for the oscillatory case, and good
agreement was found.

The steady flow over spring backed wall shows a zero
Reynolds number, low wavenumber instability when the
top plate velocity exceeds a critical velocity, and this
critical velocity approaches a constant value in the zero
wavenumber limit. It is of interest to see if such an in-
stability also exists for the case of purely oscillatory flows.
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Fig. 1. Effect of tangential spring restoring force on the neutral
stability curve in the absence of oscillation (Re = 0, M = T =
B = K = E = 1).
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Fig. 2. Growth rate θ vs. k for the case of purely oscillatory
flow over spring backed walls (�Ω = 0.5, �Ω = 1.0, ©Ω = 2.0,
A=5.0, Re = 0, M = T = B = K = E = 1, Λ = 0).

Figure 2 shows the variation of the real part of growth rate
with the wavenumber in the absence of steady shear. The
figure shows that for the case of purely oscillatory flows,
the system shows that the growth rate scales as k2 in the
k → 0 limit. The growth rate and the wavenumber corre-
sponding to the most unstable mode both decrease with
increasing frequency. This shows that an increase in the
frequency of oscillations stabilises the flow. The effect of
frequency on the transition velocity of an oscillatory flow
in the low wavenumber limit is shown in Figure 3. The
transition velocity increases with an increase in the oscil-
lating frequency, indicating that the system is stabilised
at higher frequencies.

The stable and unstable domains in the At −Λt plane
are shown as a function of frequency in Figure 4. The
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steady base velocity, the line with symbol � is for an oscillatory
base velocity, Re = 0, M = T = B = K = E = 1, Λ = 0,
k = 0.001).

10
−1

10
0

10
−1

10
0

10
1

Λ
t
0 

A
t
(1) 

A
t

Λ
t

UNSTABLE 

STABLE 

A
t
(2) 

Fig. 4. Stability regime in the Λt-At plane for ©Ω = 1, �Ω =
2.0 (Re = 0, M = T = B = K = E = 1, k = 0.001).

figure shows that the neutral stability curves for the steady
and oscillatory instabilities are connected, so that there is
a transition from the steady to the oscillatory instability
as Λ is decreased from the transition value to zero and A
is increased from zero the transition value.

It is of interest to examine the continuation of the in-
stability of an oscillatory flow in the finite Reynolds num-
ber regime. In the case of a steady flow past a spring
backed plate model [29], the transition Reynolds number
increases proportional to Σ at low Reynolds number, but
increases proportional to Σ1/2 in the high Reynolds num-
ber limit, as shown in Figure 5. Figure 5 also shows the
neutral stability curves for a purely oscillatory flow which
are continuations of the neutral stability curves in the zero
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Reynolds number limit. It is observed that the transition
Reynolds number for the oscillatory flow is proportional to
Σ at low Reynolds number for all the frequencies studied,
and this scaling relation is identical to that for a steady
flow. However, the transition Reynolds number Reot di-
verges at higher values of Σ, in contrast to the Σ1/2 scaling
for the steady flow. This implies that the oscillatory flow
becomes unstable only when Σ is below a critical value at
a given frequency, and there is no instability when Σ in-
creases beyond this value. Figure 5 also shows that the
transition Reynolds number increases as the frequency is
increased at a fixed value of Σ, indicating that the flow is
stabilised as the frequency is increased.

4 Oscillatory flow over viscoelastic gels

The configuration consists of an incompressible viscoelas-
tic gel of thickness HR∗ grafted to a rigid surface, and
an incompressible Newtonian fluid layer of thickness R∗
between the gel surface and a rigid top plate. In this case,
the material parameters that affect the dynamics of the
system are the density of the fluid and gel ρ∗ (assumed
to be equal), the shear modulus E∗ and viscosity µ∗

g of
the gel, in addition to the fluid viscosity µ∗. The veloc-
ity is scaled by (E∗R∗/µ∗), the length by (R∗), time by
(µ∗/E∗), the pressure by (E∗), and the relative viscosity
ηg = (µ∗

g/µ∗) is defined as the ratio of the viscosity of
the gel and fluid. The nondimensional top velocity is then
given by Λ+A cos (Ωt), where the non dimensional strain
rates are Λ = (V ∗µ∗/E∗R∗) and A = (A∗µ∗/E∗R∗).

The scaled equations for the fluid are the incompress-
ible Navier-Stokes equations

∇.v = 0 (20)

Σg (∂tv + v.∇v) = −∇P f + ∇2v (21)

where Σg = Re
Λ = Reo

Λ = ρ∗R∗2E∗

µ∗ , Re = ρ∗V ∗H∗

µ∗ , and

Reo = ρ∗A∗H∗
µ∗ are the steady and oscillatory Reynolds

numbers. The equations for the displacement field in the
gel, u, which represents the displacement of material
points from their steady state positions due to the stresses
exerted on the gel, are [17–20]

∇.u = 0 (22)

Σg ∂2
t u = −∇P g + (1 + ηg∂t)∇2u. (23)

The base state velocity profile is governed by the equation

Σg
∂v̄x

∂t
=

∂2v̄x

∂z2
(24)

and the governing equation for the mean gel displacement
is given by

Σg
∂2ūx

∂t2
=

(
1 + ηg

∂

∂t

)
∂2ūx

∂z2
(25)

where u is the displacement field, which represents the
displacement of material points from their steady state
positions due to stresses exerted on the gel. The boundary
conditions are

v̄x|z=1 = Λ + A cos (Ωt)

v̄x|z=0 =
dūx

dt
|z=0

dv̄x

dz
|z=0 =

(
1 + ηg

∂

∂t

)
dūx

dz
|z=0

ūx|z=−H = 0 (26)

where ūx is the mean displacement in the wall. It should be
noted that the base state is characterised by an oscillatory
fluid velocity as well as an oscillatory gel displacement
field.

The calculation of the growth rate is similar to that
for the spring backed wall model, and is not discussed in
detail. First, the limit Re = 0 and Reo = 0 is considered,
where the scaled wave number and frequency are O(1),
and St = ΣgΩ = 0. For a purely oscillatory flow, the low
Reynolds number asymptotic analysis for this system in-
dicates that the system indeed becomes unstable when the
top plate velocity amplitude exceeds a critical value. Fig-
ure 6, which shows the transition amplitude as a function
of the wavenumber k, indicates that the critical wavenum-
ber is not significantly altered by the oscillations. However
the value of critical amplitude initially increases with the
increasing frequency, and then decreases at very high fre-
quencies. This figure shows that the critical value of the
oscillation amplitude is higher than the critical strain rate
required for the non-oscillatory case. The neutral stability
curves at the critical wavenumber kc for the purely oscil-
latory flows for three different gel thicknesses are shown
in the Figure 7. For a steady flow, the transition velocity
is a decreasing function of the gel thickness. However, for
an oscillatory flow, it is observed that the transition ve-
locity is a decreasing function of the gel thickness at low
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frequencies, but becomes an increasing function as the gel
thickness is increased. The low Reynolds number results
are compared with experimental observations in the fol-
lowing Section 5.

We now consider the stability of an oscillatory veloc-
ity superimposed on a steady velocity of the top plate at
two different values of the non-dimensional parameter Σg,
which is a function only of the physical properties of the
system, which show that oscillations have a qualitatively
different effect on the stability in the low and intermediate
Reynolds number regimes. The system is known to exhibit
a low Reynolds number instability for a steady base flow,
and the critical wave number is comparable to the inverse
of the fluid thickness for a fixed value of the parameter
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Fig. 8. Effect of oscillation frequency on the growth rate of
the instability of the steady flow past a gel at low Reynolds
number (�A = 0.5Λ, A = 0.75Λ, Σg = 0.025 H = 1 Re = 0.11,
k = 1.1, ηg = 0).

Σg. The transition Reynolds number scales as Re ∼ Σg

in the low Reynolds number regime. We consider three
values of the parameter Σg = 0.025, 1.0 and 10.0, corre-
sponding to transition Reynolds number 0.11, 4.738 and
37.2 respectively, in the low and intermediate Reynolds
number ranges.

The effect of plate oscillation on the growth rate is ex-
amined in Figure 8 for Σ = 0.25 when the strain rate in the
steady flow is 0.11 and the wave number is kc = 1.1. This
figure shows that plate oscillations increase the growth
rate, and have a destabilizing effect. The growth rate is
also found to increase with an increase in the amplitude
of oscillations. The dependence on the frequency is more
complex, since the growth rate first increases and then de-
creases with frequency. The above results indicate that in
the low Reynolds number regime, the critical strain rate
is reduced in the presence of plate oscillation.

The effect of plate oscillations on the growth rate
Σ = 1.0, Ret = 4.738 and critical wave number kc = 1.1
are shown in Figure 9. This figure shows that the plate
oscillations have a complicated effect on the growth rate
in this parameter regime. Wall oscillations are found to
have a stabilising effect at high frequencies and destabiliz-
ing at lower frequencies. The system shows a maximum in
the growth rate at an intermediate frequency. The growth
rate is also found to increase with an increase in the am-
plitude of oscillations.

The dependence of the transition velocity on the
frequency of oscillations is more complicated at high
Reynolds number, due to the non-monotonic dependence
of the mean strain rate at the interface on the frequency of
oscillations. Figure 10 shows the variation of growth rate
of a neutrally stable non-oscillatory mode with frequency
for two different wall amplitudes. The plot shows a strong
destabilizing effect at a oscillation frequency of Ω = 1.5.
The reason for this is the non-monotonic variation of the
amplitude of the velocity oscillations in the mean flow at
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for two different amplitudes of the oscillatory velocity, (a) A =
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the interface between the fluid and the gel, due to the
complex coupling between the fluid and gel dynamics. If
the amplitude of the velocity oscillations at the interface
A is plotted as a function of frequency Ω, as shown in
Figure 11, the amplitude increases and then decreases for
Σ = 0.1, but shows a complicated non-monotonic varia-
tion at Σ = 1.0 and 10.0. The amplitude of the strain rate
at the interface A′(z = 0), which is the normal derivative
of the velocity, also shows complicated behaviour. Our cal-
culations show that the positions of the peaks in the s−Ω
curve coincide with the positions of the peaks in the A′−Ω
curves, indicating that the high growth rates are due to
the large strain amplitudes at this interface. It is impor-
tant to note that this type of behaviour is not observed
in the spring backed wall model, since the velocity ampli-
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Fig. 11. The amplitude of the velocity fluctuations A, and the
derivative of A with respect to the z cordinate A′, as a function
of the oscillation frequency Ω for different values of Σb. (+Σg =
0.1, �Σg = 1.0, �Σg = 10.0, H = 1, γ = 2.0, ηg = 0).

tude is a monotonic function of the frequency in that case,
and so the complicated behaviour of the growth rate with
frequency is not observed in that case.

5 Experimental studies

The experiments were carried out using an AR-1000N
rheometer with a parallel plate geometry. Polyacrylamide
gel was used as the flexible surface, and silicone oil was
used as the fluid. The method of preparation and char-
acterisation of the gel was identical to that in earlier ex-
periments of Muralikrishnan and Kumaran [21,22], and so
these are not repeated here. In the experiments, the poly-
acrylamide gel of thickness about 4 mm was placed on the
bottom plate of the rheometer. Silicone oil was placed on
the gel, and the top plate was lowered to obtain a film of
thickness about 300 µm. In earlier studies [21,22], the in-
stability of a steady flow was inferred as follows. The top
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plate was rotated in the stress-controlled mode, and the
shear stress was progressively increased. In the rheometer,
the torque and angular velocity of the top plate are mea-
sured, and the shear stress and strain rate at the outer
edge of the top plate are calculated assuming the flow is
laminar. If a Newtonian fluid is placed between the two
surfaces, the viscosity is independent of the shear stress.
However, when the bottom plate is flexible, there is a vis-
cous instability when the strain rate exceeds a critical
value, and the flow undergoes a transition from a lami-
nar flow to a more complicated velocity profile. Since this
more complicated velocity profile has a higher dissipation,
the apparent viscosity (ratio of the shear stress to strain
rate assuming the flow is laminar) is higher than the in-
trinsic viscosity of the fluid. Since the shear stress is fixed
and the apparent viscosity increases, the strain rate de-
creases after transition. The point at which the viscosity
increases provides the strain rate for the onset of instabil-
ity. In the present experiments, an oscillatory stress was
superimposed on the steady stress, and the viscosity was
measured as a function of strain rate. The presence of an
instability was inferred as discussed above, and a typical
viscosity-shear stress curve showing the onset of instabil-
ity is shown in Figure 12.

The oscillatory experiment was repeated at different
frequencies for the same sample, and care was taken to
ensure that the experiment was stopped before there is
significant damage to the surface of the gel due to the
instability. After the oscillation experiments are over, the
stability of a steady flow was measured using a steady
stress ramp, where the stress is increased at a constant
rate and the viscosity. The observation of the instability
of the steady flow at the stress predicted by theory was
used to indicate that the surface of the gel is not damaged
by the flow.

Since the experiments are conducted under constant
stress conditions, it is necessary to modify the Floquet
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Fig. 13. Critical stress amplitude vs. frequency for H = 15
for different gel viscosities, ( (ηg = 16.0), (ηg = 10),

. .(ηg = 5.0)).

analysis to calculate the critical stress required for the on-
set of instability, rather than the critical strain rate which
was calculated in the previous section. This calculation
is easily carried out, and is not explained in detail here.
It is important to note, however, that the results show
a strong dependence of the transition stress on the gel
viscosity. For example, the effect of gel viscosity on the
transition stress, shown in Figure 13, indicates that there
is a significant difference in the critical stress for the os-
cillatory instability when the viscosity ratio is increased
from 5 to 16, though there is less variation in the critical
stress for a steady flow in the zero frequency limit. The
gel viscosity could not be determined from experiments,
since the loss modulus of the soft gels used in the exper-
iments could not be determined due to limitations in the
oscillatory measurements. In order to compare the theory
with experiments, the viscosity ratio has been set equal
to 16, since this value is consistent with the theoretical
predictions for the critical stress for a steady flow. How-
ever, the sensitive dependence of the critical stress on the
viscosity ratio should be kept in mind while interpreting
the results.

Figures 14 and 15 show the experimental results for
two different nondimensional H values, H = 15 and
H = 9, which in the present case correspond to fluid
thicknesses of 300 µm and 500 µm respectively. The dif-
ferent data sets in the plots correspond to different gel
thicknesses and shear moduli. The results are compared
with the theoretical results obtained using the procedures
in Section 5. These figures show the theoretical predic-
tions for the critical stress for a steady flow, as well as the
frequency dependence of the critical stress for an oscilla-
tory flow. The experimental results show significant scat-
ter, but are consistent with a transition from the critical
stress for a steady flow to that for an oscillatory flow as
the frequency increases. This is expected for the following
reason. At low frequencies, the growth rates corresponding
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Fig. 14. Critical stress amplitude vs. frequency for H = 15,
theoretical prediction steady base flow with ηg = 16,
. .theoretical prediction steady base flow with ηg = 16,

best fit of experimental data, �H = 4614, G′ =
3500,©H = 4600, G′ = 3560, +H = 4600, G′ = 2945,�H =
4400, G′ = 500,�H = 4600, G′ = 600, �H = 4721, G′ =
700, �H = 4702, G′ = 1000, �H = 4525, G′ = 1250).

to the steady flow instability is much larger than the time
scales of the oscillation, and the mean flow at any instant
of time can be considered to be a steady Couette flow
driven by the stress exerted by the top plate. In this case,
it is expected that the onset of instability occurs when
the maximum stress at the top plate exceeds the critical
stress for a steady flow required for the onset of instability.
As the frequency is increased, the growth rate of perturba-
tions is not large compared to the frequency of oscillations,
and the growth of fluctuations when the top plate stress
is greater than the steady critical stress is offset by the
decay of fluctuations when the top plate stress is lower
than the steady critical stress. In this case, it is expected
that the instability is due to the accumulated growth of
perturbations over many cycles, which is studied in the
Floquet analysis conducted here.

There is significant scatter in the data for many rea-
sons. The gels used here are soft, with shear modulus
between 400 and 3000 Pa. In this case, it is difficult to
get an accurate estimate of the gel thickness, because the
gel gets significantly compressed when the zero gap ad-
justment is made. Since the gel is about 10 times thicker
than the fluid film, an error of 1% in the gel thickness
could result in a variation of 10% in the fluid thickness,
thereby resulting in an error in the theoretical estimate
of the critical strain rate. In addition, as noted before,
there is a sensitive dependence of the critical stress on the
viscosity ratio. Despite these uncertainties, it is clearly
seen that there is a transition from the critical stress for
a steady flow to the critical stress for the oscillatory flow
as the frequency is increased, and the predicted increase
in the critical stress with frequency is clearly observed in
the experiment. When the critical stress is averaged over
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Fig. 15. Critical stress amplitude vs. frequency for H = 9,

theoretical prediction oscillatory base flow with ηg = 16,
. .theoretical prediction steady base flow with ηg = 16,

best fit for experimental results, ∗H = 4728, G′ =
1230,�H = 4720, G′ = 482, +H = 4637, G′ = 869, XH =
4627, G′ = 1307,©H = 4746, G′ = 1681, �H = 4701,
G′ = 589, �H = 4714, G′ = 3500, �H = 4715, G′ =
1000, �H = 4043, G′ = 950).

all the experimental runs, there is agreement between the
theoretical and experimental results with no fitting pa-
rameters, apart from the gel viscosity which was fitted to
obtain agreement for the steady flow.

6 Conclusions

The effect of plate oscillations on fluid flow over compli-
ant surfaces was studied numerically and analytically us-
ing the Floquet analysis. Two types of compliant surfaces
were studied, the spring backed wall model, which allows
for tangential motion of the surface, and the incompress-
ible viscoelastic gel model. Both the spring backed wall
model and the viscoelastic gel model show a purely os-
cillatory instability in the limit of zero Reynolds num-
ber, and the system is stabilised by an increase in fre-
quency. The transition velocity amplitude for oscillatory
instability has a minimum at zero Reynolds number for
the spring backed model, whereas it has a minimum at
finite wavenumber for the viscoelastic gel model. For the
spring backed plate model, the continuation of the neu-
tral stability curve at small but finite Reynolds number
is studied, and it is found that the transition oscillatory
Reynolds number increases as Reo ∼ Σ, in a manner simi-
lar to the increase of the transition Reynolds number for a
steady mean flow. However, it is found that the qualitative
behavior in the high Reynolds number limit is very differ-
ent. Whereas the critical Reynolds number for a steady
flow increases proportional to Σ1/2 in the high Reynolds
number limit, it is found that the critical Reynolds num-
ber for an oscillatory flow diverges at a finite value of Σ. It
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is shown that the instability due to steady mean flow and
the purely oscillatory instability reinforce each other, and
the region of instability for a combination of oscillatory
and steady flow identified on a Λ − A parameter space.

The effect of plate oscillations was studied on the low
Reynolds number instability in steady flow over finite
thickness viscoelastic gels. The steady flow past a vis-
coelastic gel is known to exhibit a low Reynolds number
instability, and the transition velocity has a minimum at
finite wave number. A similar instability is encountered
for the oscillatory flow past a viscoelastic gel, but the
dependence of the transition velocity amplitude on the
frequency was found to be complicated. At low Reynolds
number, the velocity amplitude for an oscillatory flow was
found to be lower than that for a steady flow at all wave
numbers, and the transition amplitude was found to in-
crease with frequency. However, at higher Reynolds num-
bers, the transition amplitude for an oscillatory flow was
found to be lower than that for a steady flow for certain
wave numbers, indicating a destabilizing effect. It was also
found that wall oscillations could have a complicated ef-
fect on the instability at intermediate and high Reynolds
numbers, because of the complicated and non-monotonic
dependence of the interfacial mean velocity amplitude on
the frequency. It should be noted that the qualitative na-
ture of the neutral curves for a viscoelastic gel model can-
not be adequately reproduced using the spring-backed wall
model due to the non-monotonic nature of the growth
rate-frequency curves in the gel model. This is in con-
trast to the case of steady flow past a flexible surface,
where the qualitative behaviour of the neutral curves for
the viscoelastic model can be adequately reproduced in a
spring-backed wall model by tuning the parameters. This
indicates that accurate representation of the wall dynam-
ics is more critical for oscillatory flows. Experiments were
carried out on the stability of an oscillatory flow past a
viscoelastic gel in the zero Reynolds number limit, and the
results were in qualitative agreement with the theoretical
predictions, though it should be noted that there is con-
siderable scatter in the experimental results, for reasons
explained in Section 5.
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